Tìm kiếm

Danh mục
Hàng mới
Liên hệ: Minh
0987.28.80.81
0976.775.168
Quảng cáo






 

Bài 1 trang 44 sgk toán 9



a) Cho hàm số y = f(x) = 23 x.

Tính: f(-2);    f(-1);          f(0);             f(12);      f(1);     f(2);        f(3).

b) Cho hàm số y = g(x) = 23 x + 3.

Tính: g(-2);    g(-1);         g(0);             g(12);     g(1);    g(2);        g(3).

c) Có nhận xét gì về giá trị của hai hàm số đã cho ở trên khi biến x lầy cùng một giá trị ?

Bài giải:

a)              f(-2) = -43;                    f(-1) = -23;                     f(0) = 0;

                 f(12) = 13;                      f(1) =  23;                       f(2) = 43;               f(3). = 2.

b)              g(-2) = 53;                    g(-1) = 73;                      g(0) = 3;

                 g(12) = 103;                   g(1) = 113;                  g(2) = 133;          g(3) = 5.

c) Khi x lấy cùng một giá trị thì giá trị của g(x) lớn hơn giá trị của f(x) là 3 đơn vị.


Bài 2 trang 45 sgk toán 9


Cho hàm số y = - x + 3.

a) Tính các giá trị tương ứng của y theo các giá trị của x rồi điền vào bảng sau:

b) Hàm số đã cho là hàm số đồng biến hay nghịch biến ? Vì sao ?

Bài giải:

a)

Với y = -1/2x + 3, ta có f(-2,5) = -1/2(-2,5) + 3 = (2,5 + 6)/2 = 4,25;

Tương tự: f(-2) = 4; f(-1,5) = 3,75 ; f(-1) = 3,5  ; f(-0,5) = 3,25; f(0) = 3; f(0,5) = 2,75;  f(1) = 2,5 ; f(1,5) = 2,25 ; f(2) = 2 ; f(2,5) = 1,75.

b) Hàm số nghịch biến vì khi x tăng lên thì y giảm đi.


Bài 3 trang 45 sgk toán 9


Cho hai hàm số y = 2x và y = -2x.

a) Vẽ trên cùng một mặt phẳng tọa độ đồ thị của hai hàm số đã cho.

b) Trong hai hàm số đã cho, hàm số nào đồng biến ? Hàm số nào nghịch biến ? Vì sao ?

Bài giải:

a) Đồ thị củahàm số y = 2x là đường thẳng đi qua O và điểm A(1; 2).

Đồ thị của hàm số y = -2x là đường thẳng đi qua O và điểm B(1; -2).

 

b) Hàm số y = 2x đồng biến vì khi x tăng lên thì y tương ứng tăng lên.

Hàm số y = -2x nghịch biến vì khi x tăng lên thì y tương ứng giảm đi.

y = 2x -1 0 1 2
y = -2x -2 0 2 4
y = -2x 2 0 -2 -4

 


Bài 4 trang 45 sgk toán 9


Đồ thị hàm số y = √3 x được vẽ bằng compa và thước thẳng ở hình 4.

Hãy tìm hiểu và trình bày lại các bước thực hiện vẽ đồ thị đó.

Bài giải:

Ta biết rằng đồ thị hàm số y = √3 x  là một đường thẳng đi qua gốc tọa độ. Hơn nữa, khi x = 1 thì y = √3. Do đó điểm A(1; √3) thuộc đồ thị. Vì thế để vẽ đồ thị này, ta phải xác định điểm A trên mặt phẳng tọa độ. Muốn vậy ta phải xác định điểm trên  trục tung biểu diễn số √3. Ta có:

√3 =  = .

Hình vẽ trong SGK thể hiện OC = OB = √2 và theo định lí Py-ta-go

OD =  =  = √3.
Dùng compa ta xác định được điểm biểu diễn số √3. trên Oy. Từ đó xác định được điểm A.


Bài 5 trang 45 sgk toán 9 


a) Vẽ đồ thị hàm số y = x và y =2x trên cùng một mặt phẳng tọa độ Oxy (h.5).

b) Đường thẳng song song với trục Ox và cắt trục Oy tại điểm có tung độ Y = 4 lần lượt cắt các đường thẳng y = 2x, y = x tại hai điểm A và B.

Tìm tọa độ của các điểm A, B và tính chu vi, diện tích của tam giác OAB theo đơn vị đo trên các trục tọa độ là xentimét.

Bài giải:

a) Xem hình trên

b) A(2; 4), B(4; 4).

Tính chu vi ∆OAB.

Dễ thấy AB = 4 - 2 = 2 (cm).

Áp dụng định lý Py-ta-go, ta có:

OA =  = 2√5 (cm), OB =  = 4√2 (cm).

Tính diện tích ∆OAB.

Gọi C là điểm biểu diễn số 4 trên trục tung, ta có:

 =  -  =  OC . OB -  OC . AC.

                =  . 42 - . 4 . 2 = 8 - 4 = 4 (cm2).


Bài 6 trang 45 sgk toán 9


Cho các hàm số y = 0,5x và y = 0,5x + 2

a) Tính giá trị y tương ứng với mỗi hàm số theo giá trị đã cho của biến x rồi điền vào bảng sau:

b) Có nhận xét gì về các giá trị tương ứng của hai hàm số đó khi biến x lấy cùng một giá trị ?

Bài giải:

a) 

b) Khi x lấy cùng một giá trị thì giá trị của hàm số y = 0,5x + 2 lớn hơn giá trị của hàm số y = 0,5x là 2 đơn vị.


Bài 7 trang 46 sgk toán 9


Cho hàm số y = f(x) = 3x.

Cho x hai giá trị bất kì x1, x2 sao cho x1 < x2 .

Hãy chứng minh f(x1 ) < f(x2 ) rồi rút ra kết luận hàm số đã cho đồng biến trên R.

Bài giải:

Từ x1 < x2 và 3 > 0 suy ra 3x1< 3x2 hay f(x1) < f(x2 ).

Vậy hàm số đã cho đồng biến trên R.




Đăng nhập
Giỏ hàng
Bạn đang có 0 sản phẩm trong giỏ hàng
Xem giỏ hàng
Hàng bán chạy
Thống kê
Lượt truy cập : 940302
Số người online : 117
+ Khách : 117
+ Thành viên : 0
Quảng cáo




Trang chủGiới thiệuSản phẩmInsight EnglishBHXHDatabaseTiện íchGiải tríKhoảng trờiWall Web
Email : tianangdep@gmail.com
Điện thoại : 0987.28.80.81
Nội dung : Phạm Văn Minh
Xây dựng : Vũ Quang Hiệu
Blog : tianangdep.blogspot.com
       © 2017 - 2018 : Tia Nắng Đẹp